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Als t rae tmThis  paper describes a trajectory analysis of the inertia collection of monodisperse- and 
polydisperse-droplets by a normal flat plate and a circular cylinder in gas-liquid mist flow, taking 
into account the far-wake displacement effect of gas-phase flow. The effects of the far-upstream 
droplet-size distribution and the gas-phase flow separation upon the local collection efficiency and 
the velocities and size distribution of droplets on impingemcmt are examined. On the basis of these 
results, a new equivalent diameter of polydisperse-droplets is proposed. 

1. INTRODUCTION 

Cooling of heated bodies by suspending water droplets in a gas stream has a remarkably 
improved performance of heat transfer in comparison with single-phase gas cooling; ac- 
cordingly, this gas-water mist cooling is considered to be available for a significant reduction 
in the size and weight of heat exchangers and for emergency cooling at peak loads or in 
accident of normally gas-cooled equipment such as nuclear reactors. 

The heat transfer of gas-water mist flow is an extremely complicated phenomenon 
which depends on the size distribution of water droplets in frecstream, the droplet trajec- 
tories, and the flow behavior and evaporation of water film on a heated body, etc. Con- 
sequently, although many theoretical and experimental studies have been made, the majority 
of existing theoretical studies are focused on either the heat transfer from dry surface or 
the flow behavior and evaporation of water film, without consideration for the droplet 
trajectories; for instance, Hodgson & Sunderland (1968), Thomas & Sunderland (1970), 
Aihara et al. (1979), Nishikawa & Takase (1979), and Aihara & Fu (1982). The droplet 
trajectories are taken into consideration only by Goldstein et aL (1967) and Lu & Heyt 
(1980). 

As for the droplet trajectory and collection efficiency, with no heat transfer, many 
analyses have hitherto been made by using various models: in the case of a circular cylinder 
or a sphere, an unseparated potential flow model has been adopted as gas-phase streamlines, 
(e.g. Healy 1970; Morsi & Alexander 1972). In the case of a normal flat plate, Hess's free- 
streamline theory (1973), which gives a wake flow rather different from the real wake bubble, 
is used to calculate the gas-phase streamlines (e.g. Ushiki et al. 1977). 

In this paper the inviscid bluff-body wake model by Kiya & Arie (1977), including 
far-wake displacement effect, is used to make a trajectory analysis of the local impinging 
velocities and partial collection efficiency of monodisperse-droplets by a normal flat plate 
and a circular cylinder, immersed in a gas-liquid mist flow. Furthermore in the case of 
polydisperse-droplets, the effects are examined of the size-distribution of droplets in free- 
stream upon the impingement size-distribution and total collection efficiency; and then a 
new equivalent diameter is proposed. 

2. CASE OF MONODISPERSE-DROPLETS 

2.1 Physical model and governing equations 
We consider a flat plate or a circular cylinder of a characteristic dimension ! immersed 

in a crossflow of gas-liquid mist with velocity uo®, as shown in figure 1. Suppose that a 
droplet, being far-upstream at a distance Yo from the axis of symmetry, impinges at a 

389 



390 T. ~dHARA and w..s. ~O 

t J 

x =  - 5 l  

(a) Fiat )late 

-.Z' 

u~ 

l " //a~ 

/Z¢~ X=-,qL 

(b)  Circular cyt inder 
Figure 1. Physical model. 

distance yj onto the body. Let (Y0),~ be the far-upstream position of the droplet which 
just grazes the body. In the ease of a plate, the grazing points B coincide with the separation 
points; however, in the case of a cylinder, the grazing points B do not always coincide with 
the separation points, shown by angle/3~ in figure l(b). 

The following, some of which are discussed in appendix A, are assumed for simplifi- 
cation. 
(1) The gas flow is steady, two-dimensional and laminar. 
(2) The thickness of the gas-phase boundary layer is very small, compared with the char- 

acteristie dimension 1. 
(3) The liquid droplets are spherical, rigid particles of a diameter d~ and are uniformly 

distributed in the gas-phase far-upstream. 
(4) The cloud of droplets at a low concentration does not affect the gas-phase flow pattern; 

and the droplet-droplet interaction is negligible. 
(5) The gas-droplet interaction follows the drag law for a single rigid particle. 
(6) The droplets have the same velocity as the gas-phase at a distance 51 upstream of the 

body. 
(7) All physical properties remain constant. 
(8) The influence of gravity, electrostatic force, free-stream turbulence and the Saffman 

effect are negligible. 
Subject to these assumptions, the equations of motion of a small droplet are 

_ 1 C a  P c  h lw,I - , [1] 
rna d t  2 

d v a  1 Ca Pc Aalw,[ ( v a  - va) , [2] 
m a  d t  - -  2 

and the initial conditions are 

a t x / l  = - 5  , u d =  u ~  a n d  v d =  v~ [3] 
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Here, ma and Ad are the mass and projected area of the droplet; Pc the gas density; t the 
time; CD the drag coefficient; us and va the droplet vdocities in x- and y-directions (as 
shown in figure 1); w, the relative velocity vector between the gas-phase and the droplet; 
u ~ and v~ the gas-velocity components, which are evaluated on the basis of Kiya & Arie's 
theory (1977), using an inviscid bluff-body wake model, allowing for the far-wake displace- 
ment effect. 

2.2 S u m m a r y  o f  numerical method 

Introducing the dimensionless variables 

X = x / l  , Y =  y / l  , Ua = us/uo** , Va = va/uo** , [4] 

Uo = u ~ / u ~  , Vo = v o l u o ,  , I W , l = l w , l / u o .  , r =  t u o ® / l  , 

into [1] and [2], it produces the following equations: 

d Ud CDRes 
K d----~-- 2 ~ l W , l ( u ~ - u , )  , [5] 

d I'd C DRear 
K d---~- -- 2~ lW,l (re - V,) [6] 

with 

[7] 

Here K is called the inertia parameter, p a the liquid density, and Rea the droplet freestream 
Reynolds number, defined by: 

Ree = dd u a ® / v a  [8] 

where u a is the kinematic viscosity of gas. As for the droplet drag coefficient Co, Morsi 
& Alexander's (1972) polynomial approximation is used as 

C, C~ 
C1) = Co + Red [W,~ + Re)  IW,I = [9] 

where Co, C~, C2 are the constants, as given in table I. 
The above dimensionless equations are solved numerically by a forward-marching 

scheme employing the following finite-difference approximations. This scheme is substan- 
tially the same as in the authors' previous report (Aihara & Fu, 1982): 

U~"L, = U,~k + ~ CoRe~lW,('-t)l 

-[ V(~k+t = Vd, k + ~ CoRedlW 

+ C~ + 
Re~ IW%'-~) I 

{U~.k+l- U~'~)~} , [10] 

";" V d ,  k + l  I Rea lW~:-'l { v~.~+. - ~,(n-,) 

Ill] 

where the superscript (n) refers to the iteration number and the subscripts k and k +  1 to 
the values at point (X. Y) and ( X + A X ,  Y+AY), respectively. The dimensionless relative 
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Table 1. Constants in Morsi & Alexander's approximate equation of the 
particle drag c, oeffident CD 

ReMW,I - Co C, Ca 

< 0.I 0 24 0 
0. I - 1 3.69 22.73 0.0903 
1 - 1 0  1.222 29.1667 - 3.8889 

1 0 - 1 0 0  0.6167 46.5 - 116.67 

velocity Iw<;-') I is determined by the following equation: 

IWP-I)[=[(  U°'k + Uo'k+12 U,k + U~l+)~ .1" 
/ 2 

(Vo.k+ VO, k+~ V~k+ V(~)~)21~ [12] 
+ 2 - 2 

Using [I0] and [II], the droplet velocity components U,tk+1 and V, Lk+I at a position 
(X+AX, Y+AY) are calculated with the iterative procedure, which is repeated until the 
following criterion for convergence is satisfied: 

1 U~ ~) 
U#(~+l) 

< 1 0  - 3  1 Vd(~) 
' V d ( n + l  ) 

< 10 -3 [13] 

The sizes of the forward step are determined by 

AX = Ud.k+ I A~" , A Y = V g k + l  Am , [14] 

and the starting values of droplet velocity in the iterative procedure are selected, as follows: 

v(J~+, = u~.k , v~t+, = v~k [151 

As for the time increment AT, the value decreasing with the advance of droplet is adopted 
so that the spatial step sizes may be sufficiently fine near the body and that the number 
of steps for calculating a trajectory may amount to 100-500. The step number less than 
90 may produce errors of a few percent or more in numerical results. 

The above-mentioned numerical calculation is continued iteratively until the droplet 
impinges on the body. In the case where the droplet bypasses the body with no collision, 
the calculation is continued until X = 3 or the droplet enters the separated region. The 
ratio of the mass flow rate of the droplets entering the separated region to that of the 
droplets collected by the forward portion of a cylinder is described in appendix B. 

2.3 Numerical results and discussion 
The numerical calculations were made on the a i r -water  mist flow with P#/Po = 840, 

dall---- 3×  10 -4 to 3×  10 -3, and the gas Reynolds number Reo = 1.54× 104, where 

Reo = l u o . / v o  [16] 

As for the drag coefficient Coo, base-pressure coefficient C@, and separation angle 13, of 
the body which were necessary in applying Kiya & Arie's theory (1977), the same empirical 
values as in their paper were adopted as follows: 

Cob = 1.01, C@ = -0 .96 ,  13, = 75 ° for a circular cylinder, 
Cob = 2.11, C@ = -1.38 for a normal flat plate. 
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Consequently the variations in the similarity parameters K and Red are not inde- 
pendent of each other in the present computations. Two methods are, however, available 
in reducing the number of these similarity parameters in a practical way. One of them is 
Langmuir's modified inertia parameter Ko which is in wide use for presentation of aircraft 
icing data; its physical meaning is clarified by Bragg (1982), as follows: 

K fo' c w,I 
/Co - CDRed/24 IW,I 

The other is Bragg's trajectory scaling parameter (1982), K-, expressed as 

K = K/Re '~  

[17] 

[18] 

Here rn is the exponent for which the approximate drag law of C~ ~ (RedlW,I) m-' best 
fits the standard drag curve in the relative velocity range of interest (cf. figures 7 and 8). 
For convenience, the values of Langmuir's/Co parameter and Bragg's "K parameter along 
with those of rn recommended by Bragg, are plotted within the range of the present 
computations in figure 2. 

Figures 3 and 4 show the gas streamlines and droplet trajectories in the vicinity of a 
plate and a cylinder; it may be seen that the smaller the droplet size dd/l ,  the more the 
droplet is liable to bypass the body. 

Figure 5 presents the relations between the starting point Y0 of trajectory-calculation 
and the impinging point Yi of the droplet onto the body. In the case of a plate, since the 
grazing trajectory always touches at the edge of the plate regardless of the droplet size (cf. 
point B in figure l(a)), all the curves extend to y~ / l  = 0.5, as shown in figure 5(a). In the 
case of cylinder, the grazing point shifts downstream with an increase in the droplet size 
(cf. point B in figure l(b)); and the y i / l  curves end at the respective grazing points; as 
shown in figure 5(b). The relations of the starting point for grazing trajectory (do)m~ vs 
the relative droplet-size dd/ l  are shown in figure 6. 

The velocities of droplets on impinging onto the body are plotted in figures 7 and 8. 
With an increase in droplet diameter, the impinging velocity in x-direction udi increases, 
but that in y-direction vd~ decreases; and generally in both cases the velocity components 
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Figure 2. Parameters governing panicle trajectories ,is ds/1 (Rec= 1.54X 104). 
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Figure 4. Gas streamlines and droplet trajectories near a cylinder. 
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Figure 8. Velocity components u~i, Vd~ of droplets impinging onto a circular cylinder. 
Symbol O refers to the gra~ng point. 

increase on being apart from the stagnation point. These arise from the inertia effect of 
particles, as may be seen from figures 3 and 4. 

Figure 9 presents the distributions of the local partial collection efficiency "0c, which 
is calculated as follows: as may be seen from figure l(b), the droplets impinging onto an 
elementary part dy, on the body are coming through an elementary interval of dy0 far- 
upstream. Therefore, if we denote the far-upstream mass flux of droplets by Gd~, the 
impingement rate is given as Gdoodyo. Then, the mass flow rate of droplets which will 
impinge onto the elementary part dyi, if the streamlines are not diverted by the body, is 
expressed as Gd~ dyi. Accordingly, the local partial collection efficiency is given as 

Gd= dy0 dy0 
~c - Gd= dy~ -- dyi [19] 

It is seen by an inspection of figure 9 that the value of ~c for a normal fiat plate increases 
on going away from the stagnation point toward its free edges, though that of a cylinder 
decreases inversely on approaching toward the grazing point. 

In figure 10, the authors' numerical solution is compared with the results of Ushiki et 
al. (1977) in respect to the local partial collection efficiency "0c for a normal fiat plate. The 

1 ~ i I i 

d~/~=3xlO -3 

6,:10 -4 
0.2 

0 , , I , , 
0 0.1 0.2 0.3 0.4 0.5 

y~/z 
Figure 9. Effect of the droplet diameter d~ on the distributions of local partial collection 
efficiency "~: - - -  flat plate; circular cylinder; symbol O refers to the grazing point 

on the cylinder. 



EFFEC'I~ OF DROPLEr-sIZE DISTRIBUTION 

' U s h i ' k i  . '  e l l .  ' / 
O.7 -i 

- - -  ColcuIoted, Ro~=O 
o Measurecl, Rea=5-14 /~ 

0.5 

o .... cr--~ . . . .  ",,,j, 
0.1 IRe,, =11.5 -~ 

/ 
I I I I I 

0 0.1 0.2 0.3 0.4 0.5 

y~/t 
Figure 10. Comparison of the authors' solution with Ushiki et al.'s (1977) results in respect of 
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experimental values of Ushiki et aL for a vertical downward flow of air/powder mixture 
are slightly greater than the authors' solution; and their theoretical values for Red = 0, on 
Hess's discontinuous potential flow (1973), are still greater. 

Figure 11 shows differences between the local partial collection efficiencies for a flow 
with separation and for those without separation. The differences are very large in the case 
of a flat plate, particularly for small dd/1; but not in the case of a cylinder. 

3. CASE OF POLYDISPERSE-DROPLETS 

The reliability of theoretical analysis depends not only upon accuracy in numerical 
calculation but also on the fidelity of mathematical model for actual phenomenon. Since it 
is almost impossible in practical applications to obtain monodisperse-droplets, we make an 
analysis of polydisperse-droplets in this section. 

3.1 Physical model and theoretical analysis 
First, it is assumed that the polydisperse-droplets of interest have a mass-basis Rosin-  

P, arnmler distribution, expressed by [20] and [21], the applicability of which has been 
experimentally verified by Kudo & Hirata (1978), Aihara et aL (1979), Hishida et aL (1981) 
and Aihara et aL (1985). 

R ,  = exp [ - ( d d / d , ) ' ]  , 

f., -- - ddd = -~'~ ~"~, ] e x p - ~ ]  

[20] 

[211 

where R ~ is the cumulative mass fraction contained in drops of diameters greater than dd, 
f ,  the mass-basis size distribution function, d, the size parameter and n the dispersion 
parameter. 

Then, according to the definition of (Yo)mx in section 2, the impingement rate of the 
droplets, which are contained in a size interval between dd and dd+ ddd, are expressed 
as 

Gd= (Yo)m~ fwddd [22] 

Therefore, the cumulative mass fraction R* of the impinging droplets greater than the size 
dd is given by the following equation with a practical accuracy: 

: d q ~  (YO),~., f ,,dd,t 

R.* = .f(d~== [23] 
"(a,~ (Yo)~,~ f . d d a  
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Figure 11. Effect of gas flow separation on local partial collection efficiency 7/~. 

The numerical integrations of the above equation are carried out with the values of (Y0)m,x 
in figure 6 and under the following conditions: 

Size intervals, 

I1 × 10 -4 for dd/ l  _--<4 × 10 -3 , 
Add/ l  [24] 

× 10 - 4 f o r d d / l  > 4 ×  10 -3 , 

and limits of integration, 

(dd),..x/l = 8 X 10 -3 and (dd)mi./l = 1 × 10 -4 [25] 

3.2 Numerical results and discussion 
3.2.1 Droplet size distributions before and after impingement onto the body. The above- 

mentioned computations are made over the ranges of del l  = 8×10  -4 to 2×  10 -3 and 
n = 1 to 4. Some of the obtained results are shown in figures 12 and 13, where the size 
distributions of droplets in freestream are plotted by dashed lines and those of droplets 
impinging onto the body, by solid curves. The smaller the size parameter do  the greater 
the differences become between the droplet size distributions before and after the impinge- 
ment. This tendency is more remarkable in a region of smaller droplet size. 

3.2.2 Equivalent diameter. Here we propose a new equivalent diameter d,  for practical 
convenience. This is defined as the diameter of imaginary monodisperse-droplets which 
would bring about the same rate of total impingement onto the body as the polydisperse- 
droplets of interest. Hence this equivalent diameter d, can be obtained by finding the 
diameter at which the (y0)~-value of monodisperse-droplets, as shown in figure 6, is equal 
to the value of the denominator in [23] for polydisperse-droplets. 

Figure 14 presents the relation between this equivalent diameter d,  and the size 
parameter d, .  It may be seen that the value of d,  increases with increasing the size and 
dispersion parameters d c and n. 

Note, the surface mean diameter, or Sauter mean diameter, d32 and the volume mean 
diameter, or mass-surface diameter, d43 may 'be defined with fw as follows: 

fw dda 

~ = ( d , 0 ~  ' [ 2 6 ]  

fca,),. ( f -  / da) ddd 

d~m d~f  , dd ~ 

d43 = ¢(dz!~., [27] 

a(d,o~ f , ,  dd~ 
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Figure 12. Size distributions of drops in freestream and impinging onto a fiat plate. 

The values of ~2 and d43 for droplets in freestream are numerically calculated with the 
1-%-diameter a s  (dd) .~  m and the 99.9-%-diameter as (dd)m~. The obtained results are plotted 
in the dimensionless form on d, in figure 15. Here, as the dispersion parameter n is increased, 
both the surface mean diameter ~2 and volume mean diameter -d43 approach the proposed 
equivalent diameter d,, regardless of the shape of body; particularly in the case of n ~ 3, 
the surface mean diameter d'-3~ agrees with the equivalent diameter d, within 10 %. 
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Figure 13. Size distributions of drops in freestream and on impinging onto a circular cylinder. 
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Figure 14. Effect of the droplet size distribution on the proposed equivalent diameter d,. 

Namely, as far as the rate of total droplet-impingement or the total collection efficiency 
is concerned, it may be recommended that the surface mean diameter d n ,  among mean 
diameters in common use, is the closest to the proposed equivalent diameter. 

4. CONCLUSIONS 

A trajectory analysis of the inertia collection of monodisperse- and polydisperse-droplets 
by a flat plate and a circular cylinder in a gas-fiquid mist flow has been made by using 
the inviscid bluff-body wake model which includes far-wake displacement effect. From the 
numerical results for air-water mist flow, the following conclusions are obtained; their 
applicability is described in appendix A. 

(1) The smaller the droplet, the more the t r a j ec to ry  is liable to bypass  the b o d y  and to be 
influenced by the gas flow separation. The smaller the droplet, the nearer the grazing 
trajectory approaches the flow center line, i.e. stagnation-point streamline. With an 
increase in droplet diameter, the x-component of the impinging droplet velocity increases 
and the y-component decreases. 

(2) As a general tendency, the larger the droplet, the better becomes the local partial 
collection efficiency ~c; and the tendency of its distribution depends strongly on the 
shape of a body. Namely, the ~c of a flat plate increases on approaching toward its 
free edges, though that of a circular cylinder decreases inversely on approaching its 

' grazing point. 

4. 
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Figure 151 Comparison of the proposed equivalent diameter d, with the volume mean diameter 

~43 and surface mean diameter"a~, in common use . . . . .  n = l ;  - - - - -  n=2 ;  . . . .  n=3 ;  
n---4. 
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(3) The effect of the existence of gas flow separation on the local partial collection efficiency 
is quite prominent for a flat plate, particularly in the case of small droplets, but slight 
for a circular cylinder. 

(4) The smaller the size parameter, the greater the differences become between the size 
distributions of polydisperse-droplets before and after the impingement onto the body. 
This tendency is more remarkable in a region of smaller droplet size. 

(5) A new equivalent diameter is proposed as the diameter of imaginary monodisperse- 
droplets which would bring about the same impingement rate as the polydisperse- 
droplets. The surface mean diameter d32, among mean diameters in common use, is 
found to be the closest to the proposed equivalent diameter. 
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A P P E N D I X  A ' 

Applicable range of the present numerical solutions 
Strictly speaking, the present results and conclusions hold good only when all of 

assumptions (1)-(8) (see section 2) are satisfied; however, from a practical viewpoint their 
applicable range is examined further as follows. 

Without ignoring the gravity, the equation of motion of a droplet in the x-direction 
should be expressed as: 

d Ud CDRe_.__.. d 1 [28] 
d---c- -- 24K IW,I (v, - vd) + Fr z , 

where Fr is the Froude number defined by 

Fr = u o., / ~ [29] 

If we ignore the gravity, the collection efficiency ~ may be underestimated by 1-3% for 
the case of Fr ~= 7. With further increases in Fr, the effect of gravity becomes negligible. 
In the case of much smaller values of Fr, although the gravity is not negligible, the effect 
of flow separation becomes negligible; therefore, existing results for a flow without separation 
is applicable. It should be incidentally added that assumption (6) produces an error less 
than 1% in the numerical results of ( Y0)m,~ in the gravitational field. 

As may be seen from [6] and [28], the governing variables of the droplet trajectories 
are K, Red and Fr alone; and Reo has no direct effect on the present results, because the 
separation-bubble substantially keeps its shape near the body over the range of Re ~ = 103 - 
103. 

As is generally known, droplets remain nearly spherical at moderate values of Red if 
surface tension forces are strong; and the drag coefficient Co for water drops in air is nearly 
equal to the standard drag curve for rigid spheres, for Red < 103. Therefore, assumptions 
(4) and (5) hold good. 

Furthermore it is also known that freestream turbulence up to 8% has a negligible 
effect on CD for Red < 200. 

Consequently, it may be said that the present numerical results are applicable over the 
range of K and Rea, more generally K0 or K, as shown in figure 2 and up to this turbulence 
intensity. 

A P P E N D I X  B 

Mass flow rate of droplets, entering the separated region 
The mass flow rate M / o f  droplets collected by the arc surface AB in figure 16 is given 

by 

Gd® (Yo)m,f. d d d [30]  M/  ~- v(dA,.. 

/ ~ ~  -\:.~: separat.ed 

Figure 16. Droplets entering the separated regmn. 
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The mass flow rate Ms of droplets entering the separated region in the figure is expressed 
a s  

3)/. - ( , ~  G,® [(yo)°m~-(yo).~.~1 f -  d d .  [311 

Therefore. considering the relation (Yo)'~-(Yo)m~ ----< AYl ----< Ay.. we obtain 

f 
( d d , , ~  

aye/. dda 

[32] 

"(~.0~ (Yo )~ fw  ddd ,, 

The value of the right-hand side in the above equation is about 3% for a circular cylinder 
~nd 8% for a normal flat plate on an estimation for n = 4 and de/1 = 2 × 1 0  -3. 

NF i2:3-G 


